
C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

22	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 1 7/$ 3 3 . 0 0 © 2 0 1 7 I EEE

DAVIDE TAIBI CLAUS PAHLVALENTINA
LENARDUZZI

Processes,
Motivations, and
Issues for Migrating
to Microservices
Architectures: An
Empirical Investigation

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl, Free University of
Bozen-Bolzano

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 23

Microservices have been getting more and more popular in

recent years, and several companies are migrating monolithic

applications to microservices. Microservices allow developers

to independently develop and deploy services, and ease the

adoption of agile processes. However, many companies are still

hesitant to migrate because they consider microservice as a

hype or because they are not aware of the migration process

and the benefits and issues related to migration. For this

purpose, we conducted a survey among experienced

practitioners who already migrated their monoliths to

microservices. In this paper, we identify a process framework

based on the comparison of three different migration processes

adopted by the interviewed practitioners, together with the

common motivations and issues that commonly take place

during migrations.

In this work, we describe the results and provide an analysis

of our survey, which includes a comparison of the migration

processes, a ranking of motivations, and issues and some

insights into the benefits achieved after the adoption.

Maintainability and scalability were consistently ranked as the

most important motivations, along with a few other technical

and nontechnical motivations. Although return on investment

was expected to take longer, the reduced maintenance effort in

the long run was considered to highly compensate for this.

Microservices and Monolithic Applications
Identification of the most suitable software architec-
ture is always a complex and important task since it
impacts the future of the development of the applica-
tion itself. Nowadays, the microservice architectural
style is becoming increasing popular, and is being
widely adopted by various large and small companies

such as Amazon, Netflix, LinkedIn, SoundCloud,
and many others.1,2,3,4 However, microservices are
not silver bullets and some companies are still hesi-
tant to migrate because they cannot clearly evaluate
the pros and cons.

The term “microservice” has been widely used
since March 2012 to refer to applications developed

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

24	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

as a set of relatively small, consistent, isolated, and
autonomous services deployed independently, with
a single and clearly defined purpose.5 Microser-
vices are language-agnostic and can be developed
independently by different development teams.
Microservices are the opposite of monolithic archi-
tectures, where applications are usually deployed as
a single package on a web container such as Tomcat
(Apache Tomcat, http://tomcat.apache.org/) or JBoss
(JBoss, http://www.jboss.org).

Numerous software architects are pushing this
architectural style, but considering the migration
costs, some practitioners are still hesitant to adopt
microservices because they are not fully aware of
the pros and cons.

So, software developers often choose to adopt
one architecture over another based on their experi-
ence in previous projects or based on the perceived
benefits of the new architecture. Therefore, it is
important to study why microservices are adopted,
to check the current motivation for their adop-
tion, and to investigate whether specific issues are
believed to require more improvement than others.

In order to elicit these motivations, we conducted
an empirical study in the form of a survey, interview-
ing 21 practitioners who adopted a microservices-
based architectural style at least two years ago.

Regarding the profile of our interviewees, they
differ in several aspects:

•	 Roles in their companies: 31.82% of our partici-
pants were software architects, 27.27% project
managers, 22.73% senior developers, 9.09%
agile coaches, and 9.09% company chief execu-
tive officers (CEOs). All the interviewees had at
least five years of experience in software devel-
opment, including the CEOs.

•	 Organization domain: 28.57% of our inter-
viewees work for banks, 28.57% for companies
that produce and sell only their own software
as a service (e.g., website builders, mobile app
generators, and others), 23.81% in consul-
tancy companies specializing in migration to
microservices, 9.52% in the IT department of
public administrations, and 9.52% in telecom-
munication companies.

•	 Type of migration: In order to address the most
common pros and cons of migration to microser-
vices, we considered both completed and ongo-
ing migrations, also taking into account the
experiences of software consultants who have
supported several migrations and the experience
of single companies that have already migrated
or are still in the migration process.

Because of the complexity of finding partici-
pants experienced in migration to microservices-
based architectural styles, we did not plan the
sample of interviewees in advance. However, to
avoid wasting the time of the practitioners and the
interviewers, before the beginning of the interview
we asked whether the participant had at least two
years of experience in migrations. We therefore
skipped ten participants who had only two months
of experience; nobody else reported less than two
years of experience.

The Questionnaire and the Survey
The goal of our survey was to analyze the motiva-
tions as well as the pros and cons of migrating from
monolithic to microservices-based architectures. We
structured the questions according to the informa-
tion we needed to collect:

Company and Personal Information.

•	 Interviewee’s role: We wanted to classify the role
of our interviewees.

•	 Company information: We aimed to identify the
company domain.

•	 Role of the company with respect to software: We
aimed to understand whether the company pro-
duces software for other companies, for internal
purposes, or if they are consultants.

Migration.

•	 Motivations. We aimed to understand the reason
for the migration.

•	 Number of migrated applications
•	 Number of developed microservices
•	 Migration process. We aimed to characterize

the migration processes adopted by experienced
practitioners to understand the actual benefits
and issues related to specific processes.

•	 Costs. We aimed to understand the costs over-
head for the migration

We collected the information both with closed-
answer questions and with open-ended questions to
allow the participants to provide their opinion on the
migration process. One of the most important goals
of the questionnaire was to assess the importance
of the motivations for the migration. Therefore, we
asked the participants to rank their motivations
based on a five-point Likert scale, where 0 meant
“totally irrelevant” and 4 meant “fundamental”.
Moreover, we explained that the values of the scale
had the sole purpose of ranking the motivations. As
an example, a value of 5 for maintenance and 3 for

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 25

separation of concerns indicates that maintenance is
considered more important than separation of con-
cerns, but the single values 5 and 3 have no meaning
in themselves.

We ran the survey during the 17th International
Conference on Agile Software Development (XP)
among practitioners experienced in microservices.
Each participant was interviewed by two authors at
the same time. Then the two researchers separately
interpreted and classified the answers. Finally, all
disagreements were discussed and clarified. Even
though this approach requires great effort, we
believe it to be the most reliable way to collect sub-
jective data based on open answers.

Qualitative and Quantitative Analysis
No noticeable differences emerged among differ-
ent roles from the statistical analysis of the motiva-
tions, issues, and benefits, while several differences
were found when we compared participants working
in consultancy companies supporting migration to
microservices and all other participants. Partici-
pants belonging to software development companies
and companies whose main business is not soft-
ware development (i.e., banks, telecommunication
operators) reported a very similar set of answers.
Therefore, in this section we report all the results
by comparing “Migration Consultants” with other
participants. Similar behavior is also reported inde-
pendent of the participant roles. Software archi-
tects reported a set of answers comparable to that
of developers, project managers, and others. The
results are reported in Table 1 with their frequency

and medians. Regarding motivations, issues, and
benefits, we identified four importance groups
based on the Likert scale adopted for ranking them
(0 5 totally irrelevant, 1 5 not very important, 2 5
slightly important, 3 5 important, and 4 5 funda-
mental). Here we describe the motivations reported
by the practitioners interviewed. Please note that the
answers are based on the summary of the descrip-
tion of the motivations provided by the participants
and may slightly vary from the classical definitions
provided in the literature.

Why Companies Migrated to Microservices
As for the motivations driving the adoption of
microservices-based architectures, software mainte-
nance was always reported and rated as very impor-
tant by all the participants. Scalability, delegation
of responsibilities to independent teams, and the
easy support for DevOps also frequently drive adop-
tion, while other motivations were only reported
by migration consultants. One interesting observa-
tion is that several practitioners reported adopting
microservices-based architectures because a lot of
other companies are adopting them.

Maintainability. The modular architecture of micro
services allows reducing the complexity of mono-
lithic systems. Breaking a system into independent
and self-deployable services enables developer
teams to make changes and test their service inde-
pendent of other developers, which simplifies dis-
tributed development. Moreover, the small size of
each microservice contributes to increasing code

TABLE 1. The motivation drivers elicited in the survey.

Motivations Entire Dataset Migration Consultants Others

Median # Median # Median

Maintainability 15 4 5 2 10 4

Scalability 15 2 3 3 12 2

Delegation of team
responsibilities

11 3 1 3 10 3

DevOps support   8 3 2 1   6 3

Because everybody
does it

  6 4 2 3   4 4

Fault tolerance   2 4 2 4 / /

Easy technology
experimentation

  2 3 2 3 / /

Delegation of software
responsibilities

  1 4 1 4 / /

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

26	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

understandability, and thus to improving the main-
tainability of the code.

Scalability. Scaling microservices is easier than scal-
ing monoliths. Scaling monolithic systems requires
huge investment in terms of hardware and often
fine-tuning of the code. If there is a bottleneck in
some component, a more powerful piece of hard-
ware can be used, or multiple instances of the same
monolithic application can be executed across sev-
eral services and managed by a load balancer.

In contrast, microservices are not automati-
cally scalable, even if they are commonly deployed
in elastic and stateless architectures. However, in a
microservices-based system, each microservice can
be deployed on a different server, with different levels
of performance, and can be written in the most
appropriate development language. If there is a bot-
tleneck in one microservice in such a case, the spe-
cific microservice can be containerized and executed
across multiple hosts in parallel, without the need to
deploy the whole system to a more powerful machine.

Delegation of Team Responsibilities. Since microser-
vices do not have external dependencies, they can be
developed by different teams independently, reduc-
ing communication overhead and the need for coor-
dination among teams. Each team owns the code
base and can be responsible for the development
of each service; it can maintain independent revi-
sions and build environments based on their needs.
The distribution of clear and independent respon-
sibilities among teams allows splitting large project
teams into several small and more efficient teams.
Moreover, since microservices can be developed
with different technologies and with a totally dif-
ferent internal structure, only high-level and techni-
cal decisions need to be coordinated among teams,
while other technical decisions can be made by the
teams themselves.

Because Everybody Does It. Microservices are
cool, and a lot of large companies are adopt-
ing them. Therefore, some practitioners become
interested and start investigating the potential of
microservices. Over time, this interest commonly
increases in practitioners. Our interviewees report
that after using microservices in a testing environ-
ment or implementing some noncritical features,
they started using it also for other features, always
because of the perceived improvement regarding
maintainability of the system. The main reason
reported for this motivation is that, even if they are
not totally aware of the real benefits, practitioners

prefer following the mainstream, and want to avoid
being out of the market in a few years because of a
wrong technology choice.

DevOps Support. The adoption of a DevOps tool-
chain is supported by microservices. Since each ser-
vice can be developed and deployed independently,
each team can easily develop, test, and deploy their
services independent of other teams.

Fault Tolerance. The failure of a microservice does
not commonly impact the whole system. In con-
trast, in a monolithic application, the failure of a
component might break the whole system. More-
over, faulty microservices can be quickly restarted.
Some of our interviewees also reported that they
automatically replace faulty microservices with pre-
vious versions of the same service to deliver the cor-
rect output without the need to restart the whole
application.

Easy Technology Experimentation. Microservices
are small by definition. Small components are faster
to develop and therefore it is easier to experiment
with new technologies or to develop new features.
As an example, some participants reported that
thanks to the polyglot nature of microservices, they
were able to experiment with the introduction of a
new service written in a new development language
that is more suitable for the new service needs. A
monolithic application would not have allowed
development in a different language, or at least
would not have allowed integrating it as easily and
flawlessly into the existing system as the microser-
vices architecture.

Separation of Software Responsibilities. Microser-
vices are responsible for one single task within
well-defined boundaries and are self-contained;
therefore, development is greatly simplified.

Common Migration Issues
The adoption of a microservices-based architec-
tural style is not always all peaches and roses. Some
issues were commonly encountered by the practi-
tioners we interviewed (Table 2). The main issues
reported are the complexity to decouple from the
monolithic system, followed by migration and split-
ting of data in legacy databases and communication
among services. Effort overhead was only consid-
ered by non-consultants. People’s minds are another
personal reason against migration, followed by con-
cern for the lack of return on investment (ROI) in
the long run.

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 27

Decoupling from the Monolithic System. The gen-
eral behavior of our participants was to start the
development of new non-critical features with a
microservices-based architectural style.

Database Migration and Data Splitting. The migra-
tion of legacy databases needs to be addressed care-
fully. On the one hand, all our participants who are
not working for consultancy companies reported
that they adopted a microservice architecture con-
nected to a legacy database or to existing database
clusters even if this would partially reduce the ben-
efits of microservices, as they were not always able
to split existing data. On the other hand, the con-
sultants recommended splitting the data in existing
databases such that each microservice accesses its
own private database.

Communication Among Services. Every microser-
vice needs to communicate. Moreover, they cannot
communicate internally but need to communicate
on the network, adding complexity to the imple-
mentation besides possible network-related issues.
Our interviewees reported that they rarely face net-
work latency problems. However, they never had
any bandwidth issues, probably because they are
all implementing systems on highly reliable cloud
infrastructures.

Effort Estimation and Overhead. Estimating the
development time of a microservices-based system
is considered less accurate than estimating a mono-
lithic system. Despite our initial thoughts—that the
effort overhead should be higher at the beginning of

the project, but lower once the initial setup of the
system is done—the interviewees always reported
an effort overhead of nearly 20% more compared
to the effort required for developing a monolithic
solution. However, they reported that the benefits
of increased maintainability and scalability highly
compensate for the extra effort.

Effort Required for the DevOps Infrastructure.

For all participants, the adoption of microservices
required adopting a DevOps infrastructure. How-
ever, the adoption of the complete DevOps tool-
chain requires a lot of effort, which needs to be
taken into account in addition to the development
effort.

Effort Required for Library Conversion. Existing
libraries require more effort for conversion. They
cannot be simply reused, but rather need to be con-
verted into one or more microservices, which again
requires additional effort.

Service Orchestration Issues. Microservices-based
architectural styles require an orchestration layer,
which adds complexity to the system and needs to be
developed reliably.

People’s Minds. Changes in existing architectures
are generally an issue for several developers. Our
interviewees reported that older developers do not
always believe in recent technologies. Moreover, a
lot of them consider the legacy system as their own
creation and are reluctant to accept such an impor-
tant change to the software they wrote.

TABLE 2. The migration issues identified in the survey.

Issues Entire Dataset Migration Consultant Others

Median # Median # Median

Monolith decoupling 7 3 / / 7 3

Database migration and
data splitting

6 4 / / 6 4

Communication among
services

4 3.5 2 4 2 3

Effort estimation 2 4 2 4 / /

DevOps infrastructure
requires effort

2 4 / / 2 4

Library conversion effort 2 4 / / 2 4

People’s minds 2 4 1 4 1 4

Expected long-term return
on investment (ROI)

2 3 1 3 1 3

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

28	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

ROI Achieved in Longer Time (or Never) Compared

to Monolithic Systems. Because of the aforemen-
tioned issues, which are mainly related to increased
effort, ROI is perceived as an important issue. How-
ever, in several cases, practitioners reported that
migration was the only choice, independent of the
costs, since they were forced to migrate because of
the lack of maintainability and the impossibility to
scale their legacy systems.

Migration Benefits
In addition to the motivations and issues highlighted
for the adoption of microservices, here we want to
understand whether the initially perceived motiva-
tions and issues are also coupled with real benefits
once microservices are actually adopted.

As reported in Table 3, improved maintenance
was confirmed as the most important benefit. Practi-
tioners reported that in the beginning they were aware
that such a complex architecture might have a nega-
tive impact on software maintenance, but in the long
run (at least one year, based on participant answers),
they discovered that the architecture is less complex to
understand and the system requires less maintenance.

Scalability was also named by several par-
ticipants; however, while migration consultants
stressed its importance, the others did not consider
it as important to them.

Our participants also reported increased perfor-
mance of the system, mainly because of the cloud
nature of the new system and as a side benefit of
increased scalability. A smaller number of par-
ticipants highlighted as side benefits the separa-
tion of concerns due to the delegation of software

responsibility to each service, and the single clear
responsibility of each service.

Unexpectedly, microservices-based systems
are less expensive than monolithic systems in the
long run, allowing for good ROI. Our interviewees
reported that ROI is achieved during maintenance
of the system, as maintenance costs are lower than
in monolithic systems. This also means that if
quick prototyping is needed or if small projects are
planned to be used for a short term, microservices
could be more expensive than monoliths.

Migration Process
Our interviewees reported using three different pro-
cesses for migrating from a monolithic system to
a microservices-based one. In Figure 1, we report
the process framework adopted by the interviewed
practitioners. The three columns clearly identify the
common and different steps in the three processes.
This supports practitioners in selecting the most
suitable migration process.

The aim of the first two processes is to migrate
an existing monolithic system to a microservices-
based one by reimplementing the system from
scratch. The aim of the third approach is to imple-
ment only new features as microservices, to replace
external services provided by third parties or develop
features that need important changes and therefore
can be considered as new features, thus gradually
eliminating the existing system. However, some
participants using the third process are planning
to move some of their existing services to microser-
vices as soon as possible as they need to work on
their maintenance.

TABLE 3. The migration benefits identified in the survey.

Benefits Entire Dataset Migration Consultant Others

Median # Median # Median

Maintainability improvement 9 4 5 4 4 3.5

Scalability improvement 7 2 5 2 2 4

ROI 6 4 / / 6 4

Architectural complexity
reduction

6 3 / / 6 3

Simplifies distributed work 2 3 2 3 / /

Performance improvement 2 1 2 1 / /

Testability 2 3 / / 2 3

Separation of concerns 2 3 2 3

Single clear responsibility 2 1 2 1 / /

Suitability for Scrum 2 3 / / 2 3

System understandability 1 4 1 4 / /

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 29

All the participants working in consultancy
companies recommended the first two approaches
(24%). Process 2 was also adopted by half of the
practitioners working in non-consultancy compa-
nies, while Process 3 was adopted by the remaining
half. All the processes have some steps in common
but differ in the details:

•	 System structure analysis. All processes start
by analyzing systems, considering the system
of systems and not only the single subsystem
or component, so as to be able to clearly iden-
tify dependencies. Dependencies are then
analyzed mainly with the support of tools
(Structure101 (structure101.com), SchemaSpy
(http://schemaspy.sourceforge.net/) or others,
depending on the development language) or

even manually. Process 1 also includes ana-
lyzing the presence of some structural code
smells, such as “Feature Envy” or “Swiss army
knife”, to identify possible classes or methods
that try to monopolize the system by carrying
out most of the tasks.

•	 Definition of the system architecture. In this task,
all processes propose defining the architectural
structure of the system, collaboratively defining
a set of architectural guidelines or principles,
and proposing how to partition the system into
small microservices. Moreover, they define the
tools and frameworks to be used for the archi-
tecture, communication protocols, service APIs,
and any other decisions that need to be agreed
among the different services. Process 1 also
includes an analysis of an architectural plan B

System Structure Analysis

Dependencies analysis (Code 101, SchemaSpy…)

System Architecture

Prioritization of Feature Development

Coding

Testing

Code smells analysis
- Feature envy classes
- Swiss army knife

Architectural guidelines definition

Architectural plan B

High level risk analysis

Customer driven

Unit and integration test

Input/Output compared with legacy system for a while

New Features implemented as MS
(Strangler Pattern)

Process 3

Migration / re-development of existing features

Process 1 Process 2

Identification of the most critical
components based on:
- Dependencies
- Number of bugs

New features are implemented as MS

FIGURE 1. The identified migration processes framework.

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

30	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

in case issues arise with the implementation of
the designed architecture, and a high-level risk
analysis of the adoption of the different archi-
tectures. Examples are analyzing the risk of
splitting the database into separate databases
or the risk of re-architecting/redeveloping some
critical services.

•	 Prioritization of feature/service development. In
this step, all the processes identify and prioritize
the next microservices to be implemented. Here,
the most important differences among the three
processes emerge.

P1.	 Prioritization is only based on the customer
value. The higher the customer value, the higher the
development priority.

P2.	 First, the existing services are prioritized,
with higher priority given to those with more bugs or
to services that need more work done to immediately
try to reduce the pain of the customer, always con-
sidering services with fewer dependencies. When
the customer’s priority is similar, the service with
the lowest number of dependencies is developed first
in order to deliver it as soon as possible.

P3.	 In this process, only new features are devel-
oped as microservices. Some practitioners refer to
this approach as the “strangler pattern”;5 here, new
microservices are added around the monolith. In the
long run, the new ecosystem of microservices will
gradually replace each feature of the existing monolith.

•	 Coding is then carried out independent from the
process.

•	 The Testing phase is the last step of all pro-
cesses. All processes prescribe unit and integra-
tion testing; P2 and P3 include testing of the
microservices in parallel to testing the original
component of the legacy system operating in
the production environment. The microservice
is tested as a black-box; it is deployed in the
production environment and fed with the same
input as the original component. The output is
then compared with the output of the original
component for a different time frame. The par-
ticipants from consultancy companies and half
of the remaining participants recommended
running these tests for at least two months,
while the remaining half of the non-consultancy
participants adopted a different time frame
depending on the frequency, the actual usage,
and the risk of the service. In the case of P3,
this approach applies for the development of
new services to replace third-party external ser-
vices or libraries.

Besides the benefits and issues reported in the
previous section, the main benefit of the first two
processes is the complete rearchitecture of the
whole system, decomposing the whole system into
microservices without continuing to work on the
maintenance of the legacy system. Considering the
third process, the main benefit is the lower migra-
tion cost, since the system is not completely re-
developed but only new features are added with
a microservice architecture. Therefore, the main
issue of the third process is he longer time needed
to completely abandon the legacy system once all
new features have been completely replaced by new
ones. In theory, if some features do not need to be
re-implemented, the legacy system could persist for-
ever next to the new microservices system. In such a
case, companies will need to decide if they want to
keep both systems in parallel or if it is more conve-
nient to re-develop the services that are still working
in the legacy system.

Cost Overhead
As also highlighted by Singleton, Killalea, and
Taibi et al., microservices architectures require
extra machinery, which can impose substantial
costs.6,7,8 All the participants confirmed that the
development of a microservices-based system has
initial costs that are higher than those for devel-
oping a traditional system, with 24% reporting
increased costs ranging from zero to 10% and
the remaining 76% reporting an effort overhead
between 20% and 30%.

All the participants also agreed that the higher
cost overhead is highly compensated by the reduc-
tion of maintenance effort in the long run. They also
reported that usually the initial extra effort is com-
pensated after a period of between two years (33%)
and three years (66%).

Effort estimation is commonly carried out as
for any other project, based on the developers’ expe-
rience, on analyzing the next development steps
(57%), or supported by a work breakdown structure
(43%). Moreover, all practitioners reported that
they increased their estimation accuracy using a
microservices-based architecture as a result of the
lower granularity of the estimations and uncertain-
ties due to the lack of external dependencies and the
need for team synchronizations.

Data Interpretation
The statistical analysis of the collected data allowed
us to collect interesting results, confirming some
previous expectations regarding general beliefs and
contradicting others.

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 31

Among the motivations that confirmed our
expectations, technical motivations were the most
important ones, while personal motivations also
influence adoption. As for the technical motivations,
reduced maintenance and increased system scalabil-
ity were confirmed to be two of the most important
drivers. Moreover, they were also confirmed to be
not only drivers but also effective benefits reported
after the adoption of microservices.

Considering the main issues identified, several
indications emerged as well:

•	 Technical issues: Migrating to microservices
requires more experienced developers, who must
be able to decompose the system and develop
new services decoupled from the monolith,
migrate data to isolated services, and include
new communication and orchestration mecha-
nisms among services that are not needed for
monolithic systems.

•	 Economic issues: Because of the aforemen-
tioned technical issues, microservices require
more effort than monoliths. However, this is not
only due to the technical issues but also to the
required DevOps infrastructure.

•	 Psychological issues: Adopting a new technol-
ogy that completely rearchitects the whole sys-
tem is usually perceived as risky. Microservices
are not an exception and, as expected, older
developers and architects tend to be more con-
servative than younger ones in adopting new
technologies.

The main benefits highlighted by the participants
after the adoption of microservices confirm the
reported motivations and issues. Only ROI was ini-
tially perceived as an issue, because of the cost over-
head of microservices. However, unexpectedly the
participants claimed that they experienced a return
on their investment within a period of between one
and three years.

As for the migration process framework reported
in Figure 1, the framework can be easily used by
practitioners who need to migrate their systems to
allow them to easily identify the most suitable steps
based on their requirements.

The processes confirm the power and suitabil-
ity of DevOps when using a microservices-based
architecture.8,9 Moreover, compared to other works
reporting migration processes, we support practitio-
ners in the identification of the high-level process
for migrating an existing system throughout the
entire process, from requirements elicitation to the
testing phase.10

Conclusion
The reasons for migrating to microservices are man-
ifold. Several participants migrated to microservices
simply because it was the only feasible solution for
reducing the growing complexity of their systems.
Therefore, maintainability as a consequence of the
properties of some microservices is the key driver for
migration, whereas the increased initial cost turned
out to be one of the main issues hindering adoption,
even if such costs were highly compensated after the
adoption because of the long-term return on invest-
ment. The results match the main benefits identified
in the literature, except for the lack of consideration
of legal issues and the security threats highlighted
by Esposito et al.4,7,8,11,12

We reported a migration process framework
composed of three processes; two for the redevelop-
ment of the whole system from scratch and one for
creating new features with a microservice architec-
ture on top of the existing system. The proposed pro-
cess framework is based on real processes adopted by
practitioners over at least two years, who reported on
the main benefits and issues identified in this study,
and can be easily used by companies to identify the
most suitable migration process based on their needs.

Our study will continue with a set of new inter-
views in order to continue capturing the evolution of
the motivations, benefits, and issues of the adoption
of microservices.

References
1.	 S. Kramer, “GIGAOM—The Biggest Thing

Amazon Got Right: The Platform,” Oct. 2011;
https://gigaom.com/2011110/12/419-the-biggest-
thing-amazon-got-right-the-platforml.

2.	 T. Mauro, “Nginx—Adopting Microservices at Net-
flix: Lessons for Architectural Design,” Feb. 2015;
http://nginx.com/blog/microservices-at-netflix-
architectural-best-practices.

3.	 S. Ihde, “InfoQ—From a Monolith to Microser-
vices 1 REST: The Evolution of LinkedIn’s Ser-
vice Architecture,” Mar. 2015; http://www.infoq.
com/presentations/linkedin-microservices-urn.

4.	 P. Calcado, “SoundCloud—Building Products at
Sound Cloud—Part I: Dealing with the Mono-
lith,” Jun. 2014; https://developers.soundcloud.
com/blog/building-products-at-soundcloud-part-
1-dealing-with-the-monolith.

5.	 J. Lewis and M. Fowler, “Microservices,”
Mar. 2014; www.martinfowler.com/articles/
microservices.html.

6.	 A. Singleton, “The Economics of Microservices,”
IEEE Cloud Computing, vol. 3, no. 5, 2016,
pp. 16–20.

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

32	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

C
LO

U
D

-N
A

T
IV

E
 A

P
P

LI
C

A
T

IO
N

S

7.	 T. Killalea, “The Hidden Dividends of Microser-
vices,” Comm. ACM, vol. 59, no. 8, 2016,
pp. 42–45.

8.	 D. Taibi et al., “Microservices in Agile Software
Development: A Workshop-Based Study into
Issues, Advantages, and Disadvantages,” Proc.
XP ’17 Workshops, 2017; doi 10.1145/3120459
.3120483.

9.	 A. Balalaie, A. Heydarnoori, and P. Jamshidi,
“Microservices Architecture Enables DevOps:
Migration to a Cloud-Native Architecture,”
IEEE Software, vol. 33, no. 3, 2016, pp. 42–52.

10.	 A. Balalaie, A. Heydarnoori, and P. Jamshidi,
“Migrating to Cloud-Native Architectures Using
Microservices: An Experience Report,” Comm.
Computer and Information Science, vol. 567,
2016, pp. 201–215.

11.	 C. Pahl and P. Jamshidi, “Microservices: A Sys-
tematic Mapping Study,” Int’l Conf. Cloud Com-
puting and Services Science, 2016.

12.	C. Esposito, A. Castiglione, and K.-K. R. Choo,
“Challenges in Delivering Software in the Cloud
as Microservices,” IEEE Cloud Computing,
vol. 3, no. 5, 2016, pp. 10–14.

DAVIDE TAIBI is an assistant professor of software
engineering at the Free University of Bozen-Bolz-
ano. His research activities are focused on software
quality and cloud migration, supporting SMEs and
micro-enterprises in reducing project failures due to
project maintainability issues. Formerly, he worked
at the Technical University of Kaiserslautern (Ger-
many), Fraunhofer IESE—Kaiserslautern (Ger-
many), and University of Insubria (Italy) where he has
researched for more than eight years. He obtained his

PhD in computer science in 2011 working on quality
models for Open Source Software. He is a member of
the IEEE. Contact him at davide@taibi.it.

VALENTINA LENARDUZZI is a research assistant
at the Free University of Bolzano-Bozen (Italy). She
obtained her PhD in computer science in 2015 working
on data analysis in software engineering. Her research
activities are focused on empirical software engineer-
ing, agile processes, effort estimation, and functional
size measurement. She spent eight months as visiting
researcher at the Technical University of Kaiserslautern
and Fraunhofer Institute for Experimental Software
Engineering (IESE) working on Empirical Software
Engineering in Embedded Software and Agile projects.
Contact her at valentina.lenarduzzi@unibz.it.

CLAUS PAHL is an associate professor at the Free
University of Bozen-Bolzano. Prior to his current
employment he was a principal investigator of the Irish
Centre for Cloud Computing and Commerce IC4. His
research interests include software engineering in ser-
vice and cloud computing. He holds a PhD in comput-
ing from the University of Dortmund and an MSc from
the University of Technology in Braunschweig. Contact
him at cpahl@unibz.it.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

got flaws?

Find out more and get involved:
cybersecurity.ieee.org

Authorized licensed use limited to: Oulu University. Downloaded on April 17,2023 at 08:25:10 UTC from IEEE Xplore. Restrictions apply.

